

Black Hole + Neutron Star Binaries in Globular Clusters Drew Clausen

Collaborators: Steinn Sigurdsson David Chernoff

Black Holes in Dense Star Clusters - January 19, 2015

Dynamical Models

Inputs:

Static, King background cluster models with evolved stellar populations

- 5-20% of neutron stars and 1-40 stellar mass BH are retained
- Vary cluster structure, binary population, binary fraction

Evolution:

 Perform 2,000 realizations of a black hole binary's evolution

- Fokker-Planck evolution of binary's orbit
- Compute the probability that the binary will interact with a background star along its path

Three-body Encounters:

 Interested in cases that result in a neutron star exchanging into the binary.

Dynamically Formed BH+NS

- Efficiency of BH+NS formation is sensitive to cluster structure and binary fraction
 - 0.2% of the realizations
 produce BH+NS in low
 concentration, low binary
 fraction simulations
 - 86% of the realizations in high concentration high binary fraction produce BH +NS

BH+NS Mergers

- * Low concentration clusters:
 - Encounters with massive WDs destroy BH+NS binaries.
- * High concentration clusters:
 - Encounters with single stars after the formation of the BH+NS binary accelerate the merger process.

Merger Recoils

 Merging compact binaries are "kicked" due to anisotropic emission of gravitational radiation.

• 7
$$M_{\odot}$$
 + NS:
 $v_{kick} = 70 - 140 \text{ km s}^{-1}$
 $v_{kick} = (2009); \text{Shibata+} (2009);$
Foucart+ (2011)
• 35 M_{\odot} + NS:
 $v_{kick} = 10 - 100 \text{ km s}^{-1}$
Gonzalez+ (2007); Campanelli
+ (2007)

BH-NS Merger Time Distributions

Are the mergers detectable?

Merger rate depends critically on the BH mass

$M_{\rm BH} \sim 7 \ M_{\odot}$

 Mergers occur at high redshift and are undetectable by aLIGO.

• Black holes are extremely rare in high concentration clusters in the current epoch.

$M_{\rm BH} \sim 35 \ M_{\odot}$

Predicted aLIGO BH-NS merger detection rate: 0.04 - 0.72 yr⁻¹

Could be the dominant channel for BH+NS mergers detectable by aLIGO and next generation GW detectors.

Black Hole + Millisecond Pulsar

- If the NS were recycled into a millisecond pulsar before exchanging into a BH-binary, we could observe these systems in the EM-band.
 - Additional probe of globular cluster BH population
 - Test of General Relativity in the strong field regime

Orbital Parameters

Clausen+ (2014)

Orbital Evolution

Time

Orbital Periods: Cumulative Distributions

 $M_{\rm BH} = 7 \,\,{\rm M_{\odot}}$ $M_{\rm BH} = 15 \,\,{\rm M_{\odot}}$ $M_{\rm BH} = 35 \,\,{\rm M_{\odot}}$

BH+NS Binary Population Size

- Even with 200 BHs, N_{BH+NS} is only 0.01 in low density clusters
- * In moderate density clusters:
 - N_{BH+NS} grows with N_{BH} if there are ~few dozen BHs
 - \overline{N}_{BH+NS} drops at large N_{BH}

Can We Find A BH+MSP?

$N_{\rm BH+MSP} = N_{\rm BH+MSP} \times f_{\rm GC} \times f_{\rm MSP} \times f_{\rm BH} \times N_{\rm GC}$

- Our models predict that the upper limit on the number of dynamically formed BH+MSP binaries in the Milky Way is ~10
- $N_{\rm BH+MSP} = f_{\rm BH} \times (0.7 \pm 0.5)$
- Likely BH+MSP binary hosts include the clusters 47 Tuc, Terzan 5, NGC 1851, NGC 6266, and NGC 6441
- Should be $f_{
 m BH} imes 100\,$ BH+MSP binaries detectable by SKA

Summary

- BH+NS binary formation is enhanced by a factor of 100 in globular clusters, but these systems are still extremely rare
- * Searches for BH+NS mergers probe small populations of ~30 M_{\odot} black holes.
- * Searches for BH+MSP binaries probe populations of a few dozen, ~7 M_{\odot} black holes.